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Semiclassical Wigner functions for quantum maps on a 
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Department of Physics, Technion, Haifa 32000, Israel 

Received 28 June 1994, in final form 12 December 1994 

Abstract. A semiclassical formula is derived for the Wigner representation of the quasi-energy 
states of a quantum map on a torus. It is expressed as a finite sum over the classical fixed points 
ofthe map. A criterion for the a p p e m c e  of Lscars' is presented. Semiclassical Wigner functions 
of the cat map me calculated and shown to reproduce the exact quantum mechmical results. 

1. Introduction 

Semiclassical studies of chaotic systems have focused mainly on properties of the spectrum. 
Central to tliis~ approach is the Gutzwiller trace formula [I], which expresses the density 
of states as a sum over classical periodic orbits. This sum suffers from divergence 
problems, which were recently resolved by introducing several resummation methods [26]. 
A semiclassical description of the dynamics of a system also requires understanding of 
the structure of the wavefunctions. One of the imprints of classical chaotic dynamics on 
the corresponding quantum eigenfunctions is the phenomenon of scars [7], which are the 
enhancement of the probability density near classical unstable periodic orbits. Scars have 
important consequences on the thermodynamic properties of quantum systems [SI. They 
were also suggested as a mechanism for the inhibition of ionization of atoms in amicrowave 
field [9]. Heller found scars in the stadium billiard, and argued that they are generic for 
systems with a chaotic classical limit [7]. Later on, theoretical explanations within the 
framework of semiclassical periodic orbit theory were suggested by Bogomolny [IO] and 
Berry [Ill.  The formulae in this theory express the probability density and the Wigner 
function as sums over all the classical periodic orbits. However, these sums suffer from 
the same divergence problem as the Gutzwiller trace formula for the density of states, and 
in order to get a meaningful result, the functions had to be smeared over a finite range 
of energy. The resummation method introduced by Berry and Keating for the spectral 
determinant [6], was used by Agam and Fishman to~express individual Wigner functions as 
sums over an effectiveIy finite number of periodic orbits [12]: 

In studying the quantum dynamics of chaotic systems, it'is particularly convenient to 
consider discrete area-preserving mappings. These are obtained naturally as stroboscopic 
samplings of time-periodic systems, and also from the reduction of degrees of freedom 
in time-independent systems. Such reductions appear, for example, when there are some 
integrals of motion; then each constant of motion can be used to integrate out one degree 
of freedom, and the reduced dynamics is described by a map on the remaining degrees of 
freedom. Another example is a general Poincar6 surface of section, such as the bounce map 
on the boundary of a billiard. 

0305-4470/95/051345+I~l9.50 @ 1995 IOP Publishing Ltd 1345 
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Early semiclassical studies of chaotic maps were performed by Berry and Balazs [13], 
and Betty et a1 [ 141. They mainly considered the evolution of Wigner functions under the 
action of the map. Hannay and Berry [I51 considered the specific case of linear maps on 
a torus (cat maps). They used number theory to calculate the exact propagator, and to 
investigate the quasi-energy spectrum and the dynamics. Eckhardt [I61 used these results 
to derive an exact formula for the quasi-energy states of the cat map, and showed that 
they are related to the fixed points of the classical map. The periodic orbit approach to 
mappings was first introduced by Tabor 1171. He derived an analogue of the Gutzwiller 
trace formula for maps, which expresses the density of quasi-energy states in terms of the 
classical fixed points of the map. A treatment of cat maps within the periodic orbit theory 
was performed by Keating [18], who derived expressions for the propagator and the Wigner 
functions as sums over periodic orbils. Other systems which were investigated include the 
kicked rotor [ 191, the Baker's map [20,21], the kicked top [22], the linearized standard map 
[23] and the kicked Harper map [24]. For maps with a finite phase space, the finiteness 
implies that the quasi-energy spectrum can be related to a finite sum over the fixed points of 
the map [3,21]. Recently, this result was obtained by Smilansky [25] using a resummation 
method similar to that of Berry and Keating [6] .  

The purpose of this paper is to derive a semiclassical formula for the quasi-energy 
Wigner functions of quantum maps on a torus which are chaotic in the classical limit. 
In section 2, some general properties of quantum maps on a finite phase space will be 
discussed, the main results concerning the semiclassical spectral determinant for maps will 
be summarized, and the Wigner function will be defined. In section 3, the periodic orbit 
approach will be applied, in a manner similar to [12], in order to calculate the Wigner 
representation of the quasi-energy states, and to derive a semiclassical criterion for scars. 
A resummation technique suitable for maps will be used, as in [Z]. In section 4, a 
specific example of the cat map will be discussed. It will be shown that for this system the 
semiclassical Wigner functions coincide with the exact ones. A summary and discussion of 
the main results will be presented in section 5. 

2. Quantum maps 

In this section some known results are summarized, and the nomenclature is set for 
subsequent discussion. It includes three subjects: some general properties of quantum 
mechanics for a system with a finite phase space, the semiclassical spectral determinant for 
maps, and the definition of the Wigner function. 

Quantum maps arise naturally from time periodic systems. The evolution of such a 
system can be described by a unitary operator, which is the propagator for one time period: 

where I@k) is the state of the system at the kth time step, and 6 is the one-step evolution 
operator. The eigenfunctions la) of 6 are called the quasi-energy states. They satisfy 

I@k+l)  =&h) (2.1) 

where o, is the corresponding quasi-energy. 
When the phase space of the corresponding classical system is a two-dimensional torus, 

both coordinate and momentum are quantized. The Hilbert space reduces to functions 
defined on a discrete lattice, thersore, 4 $d j are not well defined operators [26]. One 
defines the two basic operators, erUq and e'PJ', as the translation operators on the quantum 
lattice, with a and ,!3 chosen such that these operators have the symmetry of the phase 



Semiclassical Wigner functions I347 

space. An additional consequence of the finiteness of phase space is that the value of 
Planck's constant h is restricted to be A/N,  where A is the symplectic area of the phase 
space and N is an integer. The quantum lattice will consist of N2 equally spaced points, 
and the semiclassical limit, R + 0, corresponds to the limit N + 00. We will assume that 
the toms is of unit symplectic area, and designate the lattice points (9n, p,) = ( n / N ,  m / N )  
by their indices (n. m). Then, the position eigenstates In) correspond to eigenvalues 4", 
and satisfy periodic boundary conditions: In + N )  = In) .  Similarly, for the momentum 
eigenstates Im) with the eigenvalues p,, Im + N )  = im). The transformation between the 
two representations is through the discrete Fourier transform 

The operators acting on this Hilbert space, and, in particular, the evolution operator U, are 
finite N x N matrices. 

The classical dynamics is described by a continuous area-preserving map M from the 
unit toms onto itself. Denoting by ( 9 ,  p )  the coordinate and momentum on the torus, the 
map is defined by the generating function S(9(k + I), 9(k ) )  such that 

. .  

where k is an integer that represents the discrete time, and S is the one-step action of the 
trajectory from (9 (k ) ,  p(k ) )  to (9 (k+  l) ,  p ( k +  1)). A fixed point of order 1 of the mapping 
M satisfies 9 ( k  + 1 )  = q ( k ) ,  p(k + I )  = p(k ) .  We shall also refer to it as a periodic orbit 
of period 1.  

Similar to Gutzwiller's trace formula in which the semiclassical approximation for the 
density of states of autonomous systems is expressed in terms of the classical periodic orbits, 
Tabor [I71 has shown that, in the semiclassical limit, the density of quasi-energies, 

N 

d(w) = C 6 ( w  - wu) (2.5) 
==I 

may be expressed as a some over all the classical fixed points of the mapping: 

Here p labels the primitive periodic orbits, which are orbits that do not trace themselves 
more than once,  and rp is the repetition number, S,, is the action of the pth primitive 
orbit, n,, is its period (the order of the fixed point), M p  is the monodromy matrix, which 
characterizes the linearized motion in the vicinity of the fixed point, and y,> is the Maslov 
phase. 

A non-singular function which is related to the quasi-energy spectrum is the spectral 
determinant A(o), defined as 

= det( 1 - e%) (2.7) 
where 

M(w)  = Nw/2ir + c ( N )  (2.8) 
is the mean quasi-energy staircase. The constani c ( N )  in this formula accounts for the 
deviation of the quasi-energy density from a uniform distribution. For a generic chaotic 
systems which exhibits level repulsion, this constant vanishes in the semiclassical limit 
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N -+ 00 [25]. Therefore, in what follows, we shall approximate 3 ( w )  = Nw/2ir. The 
spectral determinant, A@), is a real function, whose zeros coincide with the quasi-energy 
spectrum of the system. It is related to the density of states by 

0 Agam and N Brenner 

1 d  
d(o) = --Im- log A@) 

ir d o  
and may be expressed semiclassically as a product over the fixed points. Assuming that all 
the fixed points are hyperbolic, it has the form 

m 
A ( ~ )  = e - i~N/2  n n ( 1  - @++ iS(,fi-i%-W+i) 1 (2.10) 

where up is the instability exponent of the pth fixed point The difficulty in using this 
product is that it is not absolutely convergent for any real U. This is due to the exponential 
proliferation of the number of periodic orbits as their period increases. Several resummation 
methods were recently introduced in order to overcome this problem [24]. In many of them, 
a first step is to expand the product (2.10) as a Dirichlet sum over pseudo-orbits [27], which 
are linear combinations of primitive periodic orbits. The expansion takes the following 
form [25]: 

P j=O 

m .  ~ 

A ( ~ )  = ,-iwN/z ~ ~ ~ i w f  

I=O 

where I is the period of the pseudo-orbit, and 

(2.11) 

(2.12) 

Here, p(I) labels a pseudo-orbit defined by the set of repetition numbers ( r P J P ,  satisfying 
Cl, nprp = 1, and 

(2.13) 

The pseudo-orbit amplitudes c, were calculated in [27]. Apparently, the infinite sum (2.11) 
is absolutely convergent only for values of w with a sufficiently large imaginary part. 
However, it can be shown [21,25] that due to the finiteness of U, the contributions from 
pseudo-orbits with period larger than N vanish. This is related to the fact that for a matrix of 
dimensionality N ,  traces of powers higher than N can be expressed as linear combinations 
of traces of powers N or less. Moreover, the unitarity of U enables an additional reduction 
of the length of the required orbits. For odd N only pseudo-orbits of period 1 < ( N  - 1)/2 
are needed 1251, and 

(2.14) 

This result can also be derived by assuming the analyticity of the spectral determinant and 
analytically continuing it to the real w line [25]. In section 3, this method will be shown in 
detail for the case of the Wigner function. 

We now define and summarize some properties of the Wigner function of maps on a 
torus. Consider first a one-dimensional system with continuous coordinate and momentum. 
For this system the Wigner function corresponding to the state I@) is defined as [28,29] 

dq’e-’q’PIh(q - - :9’ I @)(@I9 + $9’) (2.15) 
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where (q, p)  are the coordinate and conjugate momentum. This is a real function, containing 
all the quantum information about the state I$). In particular, its projection onto q is equal 
to the probability density 1(q1$r)12, and thc projection onto p is I(p1$)12. In general, the 
Wigner function is an oscillating function with many, details, and is not necessarily positive. 
However, a Gaussian smearing of it over a phase-space region on the order of A yields a 
Husimi-type distribution, which is an everywhere positive function and therefore may be 
interpreted as a probability density function. 

The Mgner function is a special c s e  of a more general family of phase-space 
distributions, p ( q ,  p),  defined as [301 

P(4. P., = trr@ - s)l$rWIl (2.16) 

where x = (q, p)  is the vector of coordinate &d momentum in phase space. The different 
distributions are obtained from different orderings of the operators 4 and 6 in the &function 
[31]. The Wigner function is obtained from the ordering 

iP’(i-Yl/h eiY’(p -̂Pl/h eiY’lf/(u) . (2.17) 

Other forms of phasespace distributions resulting from different orderings were discussed 
by Berry, and were shown to be inadequate for investigating the semiclassical limit [30]. 

In analogy to the definition (2.15), one would like to define a discrete version of the 
Wigner function corresponding to the state I$). Therefore, an appropriate definition of the 
delta function for this case is required. The natural discrete version of the second expression 
of (2.17), which is appropriate for odd N ,  is 

=-/dq‘dp 1 e 
h2 

where the sums over n’ and m‘ range from -(N - 1)/2 to ( N  - 1)/2 to ensure the reality 
of this function. A slightly different definition is also available for even N .  In this work 
only the case of odd N will be considered. The Wigner function that results from the above 
definition and (2.16) is 

where 

(2.20) 

The function g(k)  reduces to the Kronecker delta Sx.0 for even values of k ,  and satisfies 
E”’ &k) = 2. The above definition of the Wigner function has the following properties: 
(i) it is real; (ii) a projection onto the q space yields cm W$(n, m)  = l(nl$r)12, i.e. the 
probability to occupy the site qn; and (iii) the projection onto p space yields C, W& m) = 
l(m1$)12 which is the probability to be with momentum pm.  These properties are proved 
in appendix A. Note that by construction the continuous Wigner function is recovered from 
(2.19) in the semiclassical limit N + M. 
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3. Semiclassical Wigner functions for quantum maps 

In this section we shall calculate the semiclassical approximation for the Wigner 
representation (2.19) of the quasi-energy functions la) as defined in (2.2). The starting 
point is the formula for the resolvent 

0 Agani and N Brenner 

where w is an arbitrary complex number. * (w)  may be expanded as a convergent power 
series. In the upper half plane it is of the form 

while for in the lower half plane 

Consider first the case of o in the upper half plane. We define the resolvent Wigner 
function as the Wigner representation of e+, 

m 

(3.4) 

1 U;(., m )  = - C e-i27n'mlN8(2~ - 2n + n')(l+ n'lLiKlr) . (3.5) 
N d . 1  

The semiclassical analysis begins by replacing the exact propagator Gk by its semiclassical 
approximation. The matrix elements of the latter between two lattice points 14.) and 1qb) 
are given in terms of the classical trajectories which connect qG and q, in time k 

where U labels the various classical paths, S,(qb, q"; k) is the corresponding action of k time 
steps, which is the sum of the one-step action as defined in (2.4), and yu is the Maslov phase 
of the uth orbit. Now we substitute this expression into (3 .3 ,  use the Poisson summation 
formula for evaluating the sums 0ver.n' and I, and perform the integral in the stationary 
phase approximation. In this semiclassical calculation it is consistent to replace the function 
$(k) by a delta function with the appropriate weight. (This replacement simplifies the 
calculation considerably, but the final result is obtained also by direct calculation). The 
leading contribution in this stationary phase approximation comes from trajectories which 
satisfy the midpoint rule 

4. = $ ( q u  f 'qb)  P m  = f ( P d  P b )  (3.7) 
where pa and ph are the classical momenta corresponding to the points qa and qh. The 
distance between the endpoints, [qo - q b ] ,  of such a trajectory is smaller than half the torus 
size, therefore its midpoint (3.7) is uniquely defined on the torus. The result one obtains is 
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where 

$ " ( q " . q h ; k ) = S ( q u , q h ; k ) - P " , ( q b - q Y ) -  (3.9) 
Here U labels the mid-point trajectories, and M, is the monodromy matrix, which is 
associated with the linearized motion in the vicinity of the uth trajectory. It may be expressed 
as 

(3.10) 

where S;j = a2S/aqiaqj. For the special case of k = 0, only zero-length orbits contribute; 
for these, M = I ,  the action and the Maslov index vanish and U,?,(n,m) = I / N .  We 
now introduce an averaging (. . .) over a small region in phase space, both in q and 
in p .  This average involves a number of lattice points N A  such that N << N A  << NZ, 
which is well defined in the semiclassical limit. Applying the averaging to %(n, m) 
leaves only the contribution of classical trajectories which are close to periodic ones. Note 
that this procedure is unnecessary when calculating the resolvent Wigner function of time- 
independent systems [ 1 I]. The reason is that in these systems the midpoint rule is satisfied 
by a continuum of points on periodic orbits. This degeneracy implies that the most important 
contribution comes from the vicinity of periodic orbits. Such a situation does not exist for 
one-dimensional maps, therefore in order to express the resolvent in terms of periodic orbits 
the averaging procedure is required. 

The phase (3.9) can, therefore, be expanded around the periodic orbits. Let X = (q, p )  
be a fixed point of order 1 of the classical mapping, and let 5 denote the displacement in 
phase space from X such that X + 5 is a vector on the quantum lattice, see figure I. Then 
the expansion of the phase is [32] 

The derivatives are given by 

where J is the unit symplectic matrix 

J = (  - 1  0 I )  

(3.11) 

(3.12) 

(3.13) 

. . . . e .  'i . . . . e .  

Figure 1. An illustration of the notations used in expanding 
the p h i e  (3.9) around B periodic orbit. X is a clasical fixed 
point, E is a vector representing the displacemenr from the 
fixed point to P nearby lattice site. X, and X,, satisfy the 
midpoint rule for this site. ¶"  
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and &(b) = (qu(b), Po@)). The expansion (3.11) is shown in some detail in appendix B. 
Since the derivatives are evaluated at the fixed point, X. = xb, the linear contribution to 
(3.11) vanishes. This results from the fact that only midpoint trajectories whose length is 
less than half the toms size contribute; otherwise, one would have to consider cases where 
.& - X ,  is an integer vector. The expansion of (3.9) around the periodic orbit labelled by 
p is thus 

0 Again and N Brenner 

5 
M , , - I  

q+, = S, + E J -  
M p + l  

(3.14) 

where S, is the action of the periodic orbit and M p  is the monodromy matrix. The resulting 
smoothed Wiper  resolvent is therefore 

(3.15) 

In the above sum, p denotes a primitive periodic orbit, r counts the repetitions, and np is 
the length of the primitive orbit in discrete time units, i.e. the order of the primitive fixed 
point. The next step is to sum over all the repetitions r. This is done in the same manner as 
in [12]. We restrict ourselves to the case where all fixed points are hyperbolic, namely the 
eigenvalues of the monodromy matrix are e*'.. Each term in the sum (3.15) is expanded 
as a power series in and then the sum over r becomes a simple geometric series that 
can be summed to yield 

where 
1 

bp i ;ERpS 

while 

R -,-idet.-/ M,, - I 
&f, - I  -U2 

p -  M , + l  M,,+I 

and g(j) are polynomials in the variable ib,,, given by 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(see [12] for details). The common denominator of the terms in the sum (3.16) is, up to a 
phase factor, the spectral determinant (2.10). In its region of convergence in the upper half 
plane, we will denote this function by A+(w). Equation (3.16) can therefore be written in 
the form N+/A+(w), where 

(3.21) 
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and 

A+ ( p . ' ) ( o )  = exp (ion, + iS,,/h - iy,, - up ( j  + i)] 
fl 

( ~ ' J ' ) # ( n j l  

x (1 - exp (ion,,, + is,,,/fi - iy,,, - up, ( j '  + +)}) . (3.22) 

A similar derivation can be made for the lower half plane. The corresponding functions 
will be labelled by a subscript (-). In this case, (R;;(n, m)) = N - / A - ( ~ ) ,  where 

(3.23) 

while A!?"(o) is defined similar to (3.22), and satisfies A'P'"(w). = [A+ ( p . j ) ( o * ) y ,  

The two expressions for the Wigner resolvent, in t e m  of periodic orbits, converge only 
far away from the real o-axis. In order to get a convergent expression for this function 
on the real line, an analytic continuation is required. This is done for the numerator and 
the denominator separately, using the Cauchy integral formula. The analytic-continued 
denominator is the spectral determinant A(w) (equation (2.14)) discussed in section 2. We 
are left, therefore, only with the analytic continuation of the numentor. For this purpose, 
the functions A Y ' j ) ( o )  are expanded as sums of pseudo-orbits, as explained in [12]: 

where 

(3.24) 

(3.25) 

Here, the pseudo-orbits p have been arranged in groups labelled by 1. In each group, the 
pseudo-orbits are composed of rp repetitions of the primitive orbit p .  and rp, repetitions of 
the other orbits, such that 

where n,, labels, as usual, the length of the primitive orbit in discrete time units. S, is the 
composed action of the pseudo-orbit 

(3;27) 

We assume that there exists an analytic function N(o) defined in a strip around the 
real axis, which sufficiently far from the~axis is represented by the expansions N&). By 
Cauchy's integral formula, 

(3.28) 

The contour of integration will be chosen as shown in figure 2. The contribution from the 
segments CL and CR vanish in the limit Q + 00. On each of the integration segments C*, 
the corresponding series representations N* can be used, and therefore 

dt' - - 1 jm N-(t' -it") dt'. (3.29) 
2m -m t' - it" - w 
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Im KO 

c+ 
r - - - - - - - - - - -  

C, I 
:-R 

IC, 

Figure 2. The cootour of integration in w plane 
used for the analytic continuation of the function 
N(4. 

The inteption yields 

where 
(N-1)/2 

I=O 
A~ (U) = 2 ~m A, eiO' . (3.31) 

The residue of the Wigner resolvent (E&, in)) at the quasi-energy o, is the Wigner 
representation of the quasi-energy state lor). Thus 

(3.32) 

where A'(o)  is the derivative of A ( o )  with respect to o. Equation (3.32) is the principal 
result of this paper. It describes the Wigner representation of the quasi-energy state smoothed 
over a small region in phase space, in terms of a finite sum over the classical periodic orbits 
of the map. To the leading order in 1/N this function is normalized. Due to the smoothing, 
which is over a phase-space region large compared to 1/N, the sum over phase points can 
be approximated by an integral. Then, the normalization is a result of the sum rule 

~ ' ( m )  =-+NA,(W) + np6(pJ)(o) (3.33) 
(p.1) 

where 

(3.34) 

This sum rule may be obtained by direct analytic continuation of A;(w). 
A semiclassical criterion for scars can be obtained as in [12]. Let Yp(wu) be the excess 

probability (relative to the smooth background term Ai(om)/2NA'(oa))  of the particle in 
the state lor) to be in the vicinity of the periodic orbit p. It is equal to the integral of the 
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Wigner function over a small region around the fixed point, minus the contribution from 
the background. This function may be expressed in terms of classical fixed points as 

(3.35) 

When Yp(w,) is of order of unity, one expects W d n ,  m) to be scarred around the pth 
periodic orbit. 

4. An example: the cat map 

The semiclassical expression for the Wigner function, (3.32), was obtained by a formal 
procedure involving an analytic continuation in o. It is instructive to work out a specific 
example in which the outcome of this procedure can be compared to an exact resulr A 
model in which the semiclassical approximation is expected to be exact is the family of 
hyperbolic linear maps on the torus, known as the cat maps. The purpose of this section 
is to calculate the semiclassical Wigner functions corresponding to the cat map, and to 
show that they do indeed coincide with the exact ones. The main practical difficulty in 
calculating semiclassical quantities of chaotic systems, such as the Wigner function (3.32), 
is the exponential proliferation in the number of  periodic orbits needed for the calculation. 
Even though a finite number of orbits appears in the sum (3.32), in the semiclassical limit 
N + CO. this number is exponentially large. The advantage of using a.mode1 in which the 
semiclassical approximation is exact, is that'it may be tested for a small value of N .  

The cat map is defined by the following classical transformation on the tom: 

(4.1) 

The action which generates this map is [I81 

(4.2) 2 
S(qk+l. a: nul mu) = q k  - qdqk+I + nu)  + & + I +  n d 2  - mwqk+i 

where n,,, and mm are the winding numbers in q and in p, respectively. For a given value of 
N ,  the corresponding quantum evolution over one time step is generated by the propagator 
1151 

112 

( s b ~ q ~ q h )  = (;) exp [ i b N ( q i  - qd?h + q;)] (4.3) 

where qu and qb are points on the lattice of size N .  (Note that the propagator is defined up 
to an overall phase factor; for convenience, our definition differs by a factor of i from that 
of Hannay and Berry). 

In the following calculation, we shall chose N = 3. This is clearly not compatible with 
the semiclassical limit, N -+ 00. However, for the cat map there exists a suitable definition 
of the Wigner function for which the stationary phase integrals turn out to, be exact for 
all values of N .  This is the definition introduced by Hannay and Berry [15] and used by 
Keating [IS]. Restricted only to the integer~lattice points, it is 

where + is understood to be zero at half-integer points. Like our definition (2.19), this 
function can be shown to satisfy all properties required from a phase-space distribution. 
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Table 1. The quasi-energies and their corresponding Wigner~functions for the cat map with 
N = 3. Each enlry in the table c o ~ ~ p o n d s  to the value of the Wigner function on a lattice 
point (n/3.112/3) with n, m = 0.1 and 2. The bottom left entry corresponds to the point (0, 0) 
and the bottom right entry to (f. 0). 

7 02 = I, 0,  = 11, 

r i ; t t f t O O O  I 1  

f; & j; 8 f; t . 0  0 0 
-: 1 t t - f  -a -4- 4 $ L 3 

“3 = a“ 12 12 

Figure 3. The cycles of the hyperbolic ut map on the 
3 x 3 lattice. Arrows show the action of the classical 
transformation (4.1) an the lattice points. Note tha  all 
points in a cycle admit the same value of the Wigoer 

1i3 m function (see table I). 0 

The semiclassical formula corresponding to this definition is 

(4.5) 

This expression differs from (3.32) in two respects. First, in the case of the cat map a phase- 
space averaging procedure is not needed, since the expansion of actions to second order is 
exact. Second, the midpoint trajectories can be of length up to the torus size, in contrast to 
(3.32), in which only trajectories of at most half the torus size contribute. This implies that 
in the semiclassical limit, contributions are not concentrated only near periodic orbits, but 
also near the antipode points. Consequently, this definition does not in general recover the 
expected classical behaviour in the limit N + 00. Still, it is a legitimate definition of the 
Wigner function, and since the stationary phase approximation for this case turns out to be 
exact it enables a direct testing of the resummation involved in deriving (4.5). 

In table 1, we present the quasi-energies and the Wigner functions (4.5) obtained by 
direct diagonalization of the propagator (4.3) for N = 3. Each entry in the table corresponds 
to the value of the Wigner function on a lattice point ( 4 3 ,  m/3) ,  with n,  m = 0, 1 and 2. 
The bottom left entry of the table corresponds to the point (0, 0), and the bottom right entry 
to ($, 0). The three Wigner functions agree with the expected classical behaviour, namely 
points on the lattice which permute under the classical motion have the same value of the 
Wigner function [15]. Figure 3 shows these cycles on the 3 x 3 lattice. 

For N = 3 ,  only first order fixed points are required for the semiclassical resummed 
formulae. There are two such points, (0,O) and (4, 4). which we denote by p = 0 and 
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p = 1, respectively, with winding numbers (nw, m,) = (0,O) and (1,2). The torus actions 
corresponding to these fixed points are SO = 0 and SI = $. The monodromy matrix is in 
this case the linear transformation itself, and therefore all trajectories of the same length 
have the same amplitude, which in this case is 1/& For the small value of N taken here, 
the constant c(N) in (2.8) has to be specified~ exactly. In our case it is c(3) = 7n/24. The 
spectral determinant (2.14) can now be calculated from the contributions of the two fixed 
points, in which A. = 1 and A, = -ei”l4. Using the resummed formula (2.14) one obtains 

(4.6) 
The three zeros of this function in the range w E [o, 2x1 are equal to the three eigenvalues 
of the propagator (4.3), see table 1. A similar calculation for Ai(w.), defined in (3.31), gives 

(4.7) 
With this information the Weyl term wu = hi(wa)/2NA’(w,), which is $e,constant term 
in (4.5), can be calculated 

A(O) = 4sin(+ - w)  sin(:rr + f w )  . 

A<(@) = 2sin(&n - :U) - 2 s i n ( p  13 - p ) .  I 

- - - w l = i  w z = i  w3 = o .  (4.8) 

Next we calculate the functions i ( P , j ) ( w )  defined in (3.34). From the amplitudes A Y ’ ) ,  
only those with I = 1 contribute, and they are 

(4.9) A(O.j) = e-u(j+$) A ( l . i )  = ,in/z-a(j+f) 
I I 

where U is the instability exponent satisfying e-@ = 2 - fi. The result is, 

E(o.n(,) = 2e-UCl+f)sin(&n - Iw) I 

i ( l . j ) ( w )  = 2e-u(j+i) cos(&n - +), 
(4.10) 

(4.11) 
Using the expressions (4.6), (4.7) (4.10) and (4.11), one can easily verify that the sum rule 
(3.33) holds exactly. 

In order to calculate the contributions of the periodic orbits to the Wigner €unction, the 
matrix R,, of (3.18) must be found. It is the same for the two fixed points, and is equal to 

R P = 6 (  1 0  ;) 
0 -- 

(4.12) 

Due to the fact that only first order fixed points contribute for the case N = 3, it is easy to 
sum over the index j in (4.5). The part of the sum which depends on j is 

m 
zgO)( ib , )  $p e - u ( j t i )  = Leib/&, 6 

j = O  
(4.13) 

This result was obtained by substituting (3.19) for the g”)(ib,) and changing the order of 
summation over 1 and j .  A question which arises at this point, is what values of in 
(3.17) should be taken in the sum (4.5). For a smoothed Wigner function, as defined in 
(3.32), only small values o f t  contribute effectively. However, in the case of the cat map 
no smoothing was introduced, therefore, also values o f f  which are larger than the torus 
size may contribute. Such situations correspond to expansions around images of the fixed 
points outside the fundamental torus, for which the linear term in (3.11) vanishes. The 
values of must be such that for the points they define there exists a midpoint orbit. In the 
present case of N = 3, to each lattice point correspond six midpoint orbits, and therefore 
the contributions come effectively from the two fixed points in the fundamental torus and 
four of their images outside the torus. The result of such a calculation yields exactly the 
three Wigner functions presented in table 1. 
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5. Discussion 

The main result of this paper is (3.32) for the semiclassical smoothed Wigner function of 
the quasi-energy state. This function is defined on a lattice of points in phase space, of 
size N x N ,  and is expressed in terms of a finite sum over the fixed points of the classical 
mapping of order up to ( N  - l)/Z. The semiclassical limit corresponds to N + W. 
As this limit is approached, fixed points of higher order contribute to the sum, and the 
quantum lattice samples finer structures of the phase space. Projections of this formula 
onto the coordinate and momentum spaces yield the respective probability distributions of 
the quasi-energy state. This formula is the analogue of the formula for an energy Wigner 
function of a time~independent chaotic system, and is derived by similar methods [12]. An 
important difference between the two cases is that here the finiteness of the sum is exact, 
whereas for the energy Wigner function the cutoff of the periodic orbit sum is smoothed 
by a complementary error function. The derivation assumes the analyticity of the Wigner 
function in the variable o, while for the energy Wigner function analyticity i n  1 8  was 
assumed. For the example of the cat map with N = 3, it was shown that the resummed 
semiclassical formula for the Wigner function is exact. This calculation suggests that the 
analytic continuation procedure used in order to truncate the infinite sum over fixed points, 
is exact in the case of the cat map, and may provide a good approximation for other systems. 

Numerical computations for one-dimensional mappings are in general much simpler than 
for two-dimensional chaotic systems. Therefore a numerical verification of the formula 
(3.32) for the Wigner function is expected also to be simpler than its time independent 
counterpart. This may provide a tool for the numerical investigation of the validity of the 
semiclassical approximation for wavefunctions. 
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Appendix A. Projections of the discrete Wigner function 

In this appendix it is shown that the important properties of the Wigner function are satisfied 
by the expression (2.19). Changing the sum over n’ to a sum over 4, and the sum over 
1 to a sum over 1 - n’, gives the complex conjugate of the function, therefore it is real. 
We shall now show that its projections onto the coordinate and momentum spaces give the 
corresponding probability distributions. Projecting onto q. 

The sum over m in the brackets is S,,,o. This implies that only the value n’ = 0 contributes, 
and therefore $(U - Zn) = 6 , ~ .  Summing now over I gives 
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For the projection onto the coordinate q ,  it is convenient to substitute &21 - 2n + n‘) 
by the sum in (2.20). Then, summing over n yields S,,,,.o, thus only m’ = 0 contributes. 
Changing variables 1 ’+ n’ + 1 gives 

Identifying in this expression the discrete Fourier transform, (2.3) one finds that 

C Wp(n,m) = l(mll/r)12 . (A.4) ” 

Appendix B. Expansion of the phase (3.9) near periodic orbits 

In this appendix the phase in (3.9) is expanded to second order near a periodic orbit. The 
derivation follows closely [32], and is added only for completeness. 

Differentiating (3.9) with respect to and using the classical relations 

one obtains 

Now using the midpoint relation 2q = qn + qb. which also implies 

and also using 2p - pu - pb = 0, leads to 

Substituting aq,/a< from (B.3) in (B.2), one similarly obtains 

Adding the two last equations and dividing by 2, yields 

An~additional differentiation with respect to E gives (3.12). 
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